Analytical Chemistry Seminar at the University of Utah
TBBC 4630 (4th floor Thatcher)
Exploring the Applications of Functional Materials in Analysis
by Joohoon Kim, Kyung Hee University, Seoul
Abstract: The application of functional particles with well-defined small sizes has been at the forefront of research attention in diverse fields, including biomedical imaging and diagnostics, drug delivery, sensors, and catalysis, because of the unique features of such small particles. Well-controlled synthesis and characterization of such tiny particles, especially less than ~3 nm, remain challenging due to the extremely small dimensions of the particles, too. Here, I present two main research topics. The first topic is the synthesis, characterization, and application of small functional nanoparticles less than ~3 nm. Specifically, I present a new synthesis and characterization strategy of Pt nanoparticles with different but uniform sizes using dendrimers as a molecular template, usually denominated as dendrimer-encapsulated nanoparticles (DENs). Additionally, I will discuss the utilization of Pt DENs in sensitive analytical applications. For example, a brief description of how the DEN-functionalized electrodes can be applied as electrochemiluminescence (ECL) sensing platforms is presented. The second topic focuses on a new microscopy strategy based on light-guided ECL for imaging local photoelectrochemical processes on semiconductor surfaces. Interestingly, the spatiotemporally resolved ECL imaging allowed for the simultaneous visualization of photoelectrochemical redox processes occurring locally in multiple regions on an electrode surface without any predetermined electrode patterns. This imaging approach could efficiently complement other redox imaging methods, including array-based and ultramicroelectrode-based techniques.
References:
1. Han, S.; Lee, H. J.; Kim, T.; Lim, S. Y.; Kim, J., Anal. Chem., 2024, 96, 11146-11154.
2. Lee, H.; Kim, J.; Hwang, M.; Kim, J., ACS Sens., 2023, 8, 4374-4383.
3. Lee, H.; Kim, K.; Kang, C. M.; Choo, A.; Han, D.; Kim, J., Anal. Chem., 2023, 95, 1038-1046.
4. Kim, K.-R.; Kim, J.; Oh, J.; Kim, J.; Hong, J.-I., Chem. Commun., 2023, 59, 13058-13061.
5. Kim, K.-M.; Kim, J.; Kim, J.; Hong, J.-I., Chem. Commun., 2022, 58, 7542-7545.
6. Ju, Y.; Cho, T.; Lee, K.; Kim, J.; Yoon, C. W.; Kim, J., Int. J. of Energy Res, 2022, 46, 9771-9781.
7. Lee, H.; Shin, W.; Kim, H. J.; Kim, J., Anal. Chem, 2021, 93, 16123-16132.
8. Ju, Y.; Jun, S.; Kim, J. et al., Anal. Chem, 2021, 93, 2871-2878.
9. Kang, Y.; Kim, J., ChemElectroChem, 2020, 7, 1092-1096.
10. Lee, S. B.; Ju, Y.; Lee, Y.; Kim, J., Appl. Surf. Sci., 2019, 473, 461-467
11. Kim, M. M.; Jeong, S.; Song J. K.; Kim, J. Chem. Commun., 2018, 54, 2838.
12. Cho, T.; Yoon, C. W.; Kim, J. Langmuir, 2018, 34, 7436-7444.
13. Kwon, J.; Park, S. K.; Lee, Y.; Lee, J. S.; Kim, J. Biosens. Bioelectron., 2017, 87, 89-95.
14. Lim, H.; Ju, Y.; Kim, J. Anal. Chem., 2016, 88, 4751-4758.
15. Ju Y.; Kim, J. Chem. Commun., 2015, 51, 13752-13755.
16. Kim, Y.; Kim, J. Anal. Chem., 2014, 86, 1654-1660.
Host: Long Luo